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Preface

This thesis is, de jure, about the ergonomics of various computer algebra systems. It is, de facto,
about interesting applications of computers to mathematics.

These topics grew out of a confluence of factors. First, I have always been a better programmer
than mathematician. The opportunity to augment my mathematical powers with my programming
powers was too good to ignore. Second, I discovered the wonderful book A = B in the library at
Oglethorpe University. This book is about proving, entirely automatically, summation identities. It
introduced me to the philosophy that mathematics is about making complicated things routine, a
philosophy that the computer serves as a hardy tool. I especially liked this book because it showed
that intimidating and discouragingly-difficult identities were so “routine” that a computer could
prove them—no genius required. Third, I have strong opinions about software. I believe that most
popular computer algebra systems are complete slop. For far too long I have been forced to use
Maple or Mathematica, and this thesis is partly a throwing off of my chains, such as they are.

In choosing the problems to study in this thesis, I was heavily influenced by the philosophy of A
= B. Each problem is a case study in the “routinization” of a question in mathematics. We begin
with a hard question, then show that it is actually not too hard for computers. We then show that
one computer algebra system makes the problem easier than another.

This thesis is, on the one hand, submitted as a piece of original research to the Honors program
at Oglethorpe University. On the other hand, it is an interesting tour through three applications
of computer algebra to “serious” mathematics, which students so rarely see. Thus, the thesis could
either be read as a means to evaluate my potential academic output, or as a way to learn at
least three new things about computer algebra systems. The latter may be more fun for everyone
involved.

The thesis is organized as follows. Chapter 1 is a lay-introduction to what I mean by “er-
gonomics.” Chapter 2 states the Halstead metrics. Chapter 3 introduces C-finite and Pisot se-
quences then gives some recent results by Sloane and Zeilberger. Chapter 4 brings computer
algebra to bear on propositional logic. Chapter 5 discusses Gosper’s algorithm for hypergeometric
indefinite summation. These three chapters can be tackled in any order. Chapter 6 gives some brief
concluding remarks and points towards further research.
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Chapter 1

Introduction

[Ergonomics] is that branch of science which seeks to turn
human–machine antagonism into human–machine synergy.

Peter Hancock, Essays on the Future of Human-Machine Systems
[Han97a]

Computer scientists often care about computational complexity. How long will an algorithm
take to run? How will it perform on average? In essence, how fast can we go? Though this is
an important consideration, it omits a crucial implementation detail: the human factor. Is the
algorithm painful or tedious to write? Is it overly complicated for the average programmer? That
is, is it ergonomic to use? It is easy to demand that performance trumps all, but this is a costly
mistake. Tools and environments must account for human factors; programming languages are no
exception.

We use the term expressive complexity to refer to the aggregate of human factors in a program-
ming language or algorithm. This term is, in one sense, more literally accurate than computational
complexity. We really do mean to measure how complicated programs are for humans to under-
stand. This term is likely not well-understood by most mathematicians, so we will make a brief
detour to explain it by way of analogy.

Ergonomics is the study of human relationship with work. It seeks to make necessary burdens
easier and more enjoyable. This goal is based upon the observation that “long faces are not always
efficient, nor are smiling ones idle” [Han97b]. Ergonomics considers physical and psychological
human factors, such as comfort and stress, respectively. It may, for example, suggest appropriate
levels and types of lighting for the workplace to improve morale, or recommend chairs with a certain
amount of back support to avoid long-term injury. This is all to improve the human condition and
workplace efficiency.

Though the term ergonomics may conjure images of comfortable chairs and standing desks, it
is not constrained to physical factors. Beginning in the 1970s, researchers in ergonomics began to
study mental workload. Roughly, this is how mentally taxing certain tasks are. If a worker’s mental
workload is too high, they are likely to make mistakes or “burnout” faster than a relaxed employee.
The following is a more technical definition:

[Mental workload is] the relation between the function relating the mental resources
demanded by a task and those resources available to be supplied by the human operator.

1



2 CHAPTER 1. INTRODUCTION

[PSW08]

Mental workload can be a crucial design factor. Two studies in aviation accidents found that as
much as 18% of pilot errors were due to confusing instrument design that made it difficult for pilots
to understand their readouts [Sal12, pg. 244].

This is all to say that the tools we use and the tasks we complete should be easy to understand.
We should not be satisfied that clear design happens by accident; we should deliberately strive for
it. The consequences of ignoring this can range from decreased worker productivity and longevity,
to grave, avoidable mistakes.

Consideration of mental workload is especially important in programming language design.
Programming, more than other activities, is centered around thought. Its primary tool, the pro-
gramming language, is a means to express computational thought in a way that the computer
can understand. The task of the programmer is to mentally construct a solution to a problem,
then translate this mental solution into a concrete programming language. Solving problems is
already mentally taxing enough; we should not add to the mental workload by creating a confusing
translation process.

As an example, consider a student beginning to learn programming. They must learn the mantra
that computers are “stupid”; that they will only do exactly as they are told and no more. They
must learn to translate their mental solutions into mechanical steps. That is, the student must
learn to think like a machine. The successful student will overcome this initial hurdle, but the
mental workload of translation is always present. The mental workload that remains is largely—I
argue—a function of the programming language a programmer uses.

In the context of software, I call the contributions to mental workload expressive complexity,
in opposition to traditional computational complexity. Expressive complexity, then, measures how
complicated algorithms are to implement, how difficult a language is to use, and how much mental
strain is imposed on a programmer by these objects.

Examples

Consider the following task: Sum the integers from 1 to 100. Here are three solutions:

Haskell

sum [1..100]

Python

sum(range (101))

C

int sum = 0;

for(int k = 0; k != 100; k++) {

sum += k;

}

https://www.haskell.org/
https://www.python.org/
https://en.wikipedia.org/wiki/C_(programming_language)
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All three solutions have the same computational complexity. However, they clearly differ in
their expressive complexity. The Haskell and Python solutions are almost exact 1-1 translations of
the obvious solution: Just sum the integers from 1 to 100. In particular, the programmer does not
have to think about explicit iteration, which is how computers think. Instead, they can essentially
write down their mental solution.

In comparison, the C solution is very mechanical. It shows how the computer thinks of the
process of summing integers, rather than how the programmer thinks of it. A separate sum variable
must be accounted for, because computers must do such things. An explicit loop with a counter
must be written, because computers must compute in terms of loops and counters. The programmer
must consider these things, not because humans must, but because machines must. In short, C
makes the programmer think like a machine rather than like a human.

This example shows that expressive complexity is not just a feature of a particular algorithm,
but rather a feature of particular languages. We may thus compare languages by their expressive
complexity and decide which best suit our purpose. This is our real goal of this thesis. To perform
these comparisons we will need a suitable framework in which to measure expressive complexity.
Fortunately, thanks to Maurice Halstead, such a thing already exists. We begin in the next chapter
by describing this framework, known as the Halstead metrics.





Chapter 2

Expressive Complexity

This finding, in turn, lends even greater weight to the previously
mentioned observation that the human brain must follow, or be
governed by, an interesting set of rules of which it has (or we have)
heretofore been unaware.

Maurice Halstead, Elements of Software Science [Hal77].

In this chapter we will discuss the expressive complexity of a program or algorithm. In particular,
we will describe the Halstead metrics and their definitions pertaining to effort and language level.
Since these concepts are likely foreign to most readers, let us take a moment to describe them.

First, expressive complexity is not computational complexity. Computational complexity is
roughly how many steps an algorithm takes for an input of a given size. For example, the insertion
sort algorithm can sort a list of n elements in O(n2) time. The mergesort algorithm can do the same
in O(n logn) time. We are not, however, interested in how long an algorithm takes. Rather, we are
interested in how complicated its expressions of computations are. For instance, while mergesort
has better computational complexity than insertion sort, its more intricate splitting and recursive
nature are more “complicated” to express.

As a more concrete example, consider the task of summing two numbers. In any reasonable
language there are countably many ways to accomplish this task. In fact, to any degree desired,
there is a solution that contributes arbitrarily many useless steps. Figure 2.1 shows two solutions,
one simple and one needlessly complicated. The complicated one is longer, harder to read, and
generally confusing. Yet, both solutions have the same computational complexity. Asymptotically,
they may as well be the same thing. However, the simpler one has lower expressive complexity.

The fundamental observation about expressive complexity is that humans tend to minimize it
when possible. Of the two programs in Figure 2.1, which would a programmer be likelier to write?
Of course every experienced programmer would choose the simpler option, because it contributes
no obviously useless steps. Indeed, programmers tend possess an innate desire for simplicity more
generally. If obviously useless steps are observed, then they will be removed.

The first set of expressive complexity measurements were given by Maurice Halstead in [Hal77].
These measurements are now known as the Halstead metrics. Motivated by this fundamental
observation, Halstead believed that “programmers remove useless steps” was a kind of natural law,
and that this natural law would induce certain empirical relationships between his measurements

5



6 CHAPTER 2. EXPRESSIVE COMPLEXITY

that could then be used to evaluate systems and reason about their expressive complexity. That
is, Halstead argues that by merely measuring observable properties of code written as text, we
can reason about how complicated a program is, how difficult it is to understand, and also derive
various relationships between our measurements, just like a natural science. That is, programming,
when linked with human thought, produces a system in which we can make systematic discoveries.
Halstead refers to this system as the Software Science.

This conclusion sounds surprising. It states that the “unconstrained” system of human thought
is somehow limited in what it can do by certain empirical relationships. “Intuition, however,” as
Halstead writes, “is far from trustworthy, as demonstrated when that ancient scientist dropped
the wood and lead balls from the tower of Pisa.” Halstead makes a convincing case that such
relations exist. He provides logical derivations along with supporting data compiled from large
corpora of programs. Following this argument, we shall base our study of expressive complexity on
the Halstead metrics1.

In the following sections we will define the Halstead metrics, present some empirical evidence
in their favor, and discuss some technical ambiguity.

func f(x, y):

return x + y

(a) Simple.

func f(x, y):

sum := x + y

sum2 := x + y + 100

sum3 := sum2 - 100

check := (sum3 = x + y)

if check:

return sum3

(b) Complicated.

Figure 2.1: Simple and complicated programs that accomplish the same task. The left snippet has lower
expressive complexity.

2.1 The Halstead Metrics

In this section we state a slightly modified subset of the Halstead metrics. The interested reader
is highly encouraged to seek out a copy of Halstead’s original publication [Hal77]. Some concepts
in the following definitions are taken as primitive, such as “statement,” “operator,” and so on. We
trust that the reader is well-acquainted with these.

Definition 1 (Halstead metrics). A program is a sequence of statements consisting of operands and
operators applied to operands. Let η1 and η2 be the number of distinct operators and operands,
respectively, and let N1 and N2 be the total number of operators and operands, respectively. The

1The Halstead metrics are not the sole way to understand expressive complexity. For instance, Thomas MaCabe
introduced the essential and cyclomatic complexity measures in [Mac83]. Further, the Halstead metrics have some
real flaws. See, for example, the analysis in [AA05]. Despite these objections, we focus on the Halstead metrics
because they (attempt to) explicitly relate mental effort with the underlying language.
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Halstead metrics are as follows.

Program vocabulary: η = η1 + η2

Program length: N = N1 +N2

Volume: V = N log2 η

Program Level L =
2

η1

η2

N2

Difficulty: D =
1

L

Effort: E = DV

We shall now give intuitive interpretations for select metrics.

Volume The quantity log2 η is the minimum number of bits needed to represent every operator
and operand in a program. Since there are N such elements used, the quantity V = N log2 η is the
minimum number of bits needed to represent the entire program. (Rather, dVe is the minimum
number. This approximation is off by at most 1, and is quite common in asymptotic analysis.)

Here is an amusing interpretation of V: Consider the task of writing a program of length N
with vocabulary η. When writing each element, a programmer must search through the η possible
elements in their mind to discover which to use. If we suppose that there is some ordering to these
elements, then we could use a comparison-based sort to find the correct element to use. The best
comparison-based sort on a list of size η has runtime asymptotic to log2 η [Cor+09, ch. 8]. Thus
this search takes roughly log2 η “mental comparisons” when choosing an operator or operand. Since
there are N choices to make total, the quantity V = N log2 η tells us roughly how many mental
comparisons were used to write a program. This interpretation is dubious, to say the least.

Program Level and Difficulty These metrics are intended to measure how “high level” a
program is, which is closely correlated to how difficult it is to understand. Halstead vigorously
handwaves during this derivation, but still produces a lengthy argument. We will gloss over many
of the details here.

Halstead argues that the highest level language possible would have an operator for every task,
while the lowest level would need to implement an operator for every task. Therefore, he posits
that the “level” of an implementation is inversely proportional to the number of unique operators
in the language, or

L ∼
η∗1
η1

,

where η∗1 is the minimum number of unique operators needed in a theoretical “best” implementation.
In fact, we may take η∗1 = 2, since the procedure to be implemented would already exist in the best
implementation.

Next, Halstead argues that the more an implementation repeats its operands, the lower level it
is. From this, he derives

L ∼
η2

N2
.
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To combine these measurements, we define

L =
2

η1

η2

N2
.

It is clear that both factors are in [0, 1], so multiplying them gives a “joint” measurement of both
in that interval.

Difficulty is merely the inverse of program level, D = 1/L. The higher level a program is,
Halstead argues, the easier it is to write or understand it. This is a tenuous point—consider the
difficulty of beginners in learning an unfamiliar high-level language like Haskell—but we shall take
it. In particular, Halstead interpretsD as the average number of “mental discriminations” necessary
in each “mental comparison.” These terms lack rigor, but we shall use them to describe the “effort”
metric.

Effort If D average mental discriminations needed to make a mental comparison, and V mental
comparisons are needed for a program, then E = DV measures how many mental discriminations
are needed to write a given program.

Verifying the metrics

Despite Halstead’s logical derivations, there is little reason to believe that his metrics measure any-
thing without empirical evidence to support them. After all, why should these seemingly arbitrary
metrics have any sway over the expressive complexity of a program? No amount of hand-waving
can free us from the burden of evidence.

Halstead himself presents some impressive empirical evidence for his metrics in [Hal77], but we
shall reproduce some here for a modern audience. The Python tool halstead2[Dou19] uses the
library radon [Lac18] to analyze the Halstead metrics of Python git repositories.

In Figures 2.2 to 2.4, we have plotted the metric N against the computed length metric, N̂. The
computed length is defined by

N̂ = η1 log2 η1 + η2 log2 η2.

Halstead argues that N should be directly propositional to N—indeed, even that N̂ = N—which
may seem surprising at first glance. On the surface, they seemingly have no relationship to one
another. Nevertheless, as our figures show, there is a strong linear linear relationship between the
two. Halstead provides data such as this to argue for his metrics.

2.2 Ambiguity

In defining the Halstead metrics we explicitly assumed that the concepts “operator” and “operand”
were understood. Given the broad spectrum of programming languages and the modes of thought
surrounding them, this allows for a substantial amount of ambiguity. What exactly is an operator?
What exactly is an operand? To what extent can we reliably compute the Halstead metrics? It
turns out that these questions do not have good answers.

Halstead himself is silent on this matter, but critics have pointed out this flaw. From [AA05]:
“Halstead has not explicitly described the generic measurable concepts of operators and operands.”

2Disclosure: I created halstead.



2.2. AMBIGUITY 9

Further, “there is no general agreement among researchers on the most meaningful way to classify
and count these tokens.” Halstead’s “Software Science” does not quite live up to its name.

To be intellectually honest, we should temper our conclusions with some doubt. We shall use
two different implementations of the Halstead metrics written in different languages designed for
different purposes. Only one of these implementations are open for inspection. It is difficult to
guarantee that our measurements are exactly equal across languages. We must plead that our
measurement errors wash out in the average. This is the unfortunate state of affairs.

In fact, this situation is not even unique to the Halstead metrics. Computational complexity
analysis is often performed under the assumption that some operations are “basic,” and should not
really count as operations. For example, addition is often taken to be constant time, while addition
in a basic for-loop is linear time. If we took a different set of operations to be basic, then we would
have different results.

We offer the following, final disclaimer:

The Halstead metrics are defined by the tool used to measure them.

For Python programs, we use the library radon3. For Maple, we use the builtin library
SoftwareMetrics. Both libraries include definitions of the Halstead metrics and various other
complexity measures. Maple’s SoftwareMetrics is essentially not open source, while radon is
hosted on GitHub. See [Lac18] for more information on radon and [Map11] for SoftwareMetrics.
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Figure 2.2: halstead applied to rwbogl/pisot.

3Disclosure: I contributed to the radon library in the course of his work.

https://github.com/rwbogl/pisot
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Figure 2.3: halstead applied to rubik/radon.
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Chapter 3

C-finite and Pisot Sequences

In my eyes, a piece of human mathematics is interesting and important
if and only if it can give us a clue how to generalize it and teach the
method to the computer.

Doron Zeilberger, Opinion 72 [Zei16].

In this chapter we will discuss a recent result of Neil Sloane and Doron Zeilberger on the Pisot
sequences. The Pisot sequences are a class of sequences defined by a somewhat complicated recur-
rence involving floors and squares. In 1938 Charles Pisot demonstrated some connections between
them, algebraic number theory, and the Pisot–Vijayaraghavan (PV) numbers [Pis38]. We are not
especially interested in these connections, but rather the remarkable decision procedure described by
Sloane and Zeilberger in [ESZ16] to determine if a Pisot sequence satisfies a “simple” recurrence.
In doing so Sloane and Zeilberger make extensive use of Maple, which provides us an excellent
example of computer algebra in the wild and under the reins of experienced mathematicians.

3.1 Definitions and preliminaries

Definition 2 (C-finite sequences). A sequence {an} is C-finite iff it satisfies a finite linear recurrence
relation with constant coefficients. That is, iff

an+d =
∑

06k<d

ckan+k (n > 0)

for some fixed positive integer d and constants c1, . . . , cd.

The class of C-finite sequences occur often in combinatorics and related fields. For example, the
Fibonnaci numbers {Fn} are C-finite from the recurrence

Fn+2 = Fn+1 + Fn, n = 0, 1, 2, . . . .

If Sn denotes any set with n elements and P(Sn) its powerset, then |P(Sn)| is C-finite with

|P(Sn+1)| = 2 · |P(Sn)|.

11



12 CHAPTER 3. C-FINITE AND PISOT SEQUENCES

The C-finite sequences have a simple characterization: A sequence {ak} is C-finite iff its gen-
erating function A(x) =

∑
k>0 akx

k is rational. By partial fractions, it follows that every C-finite
sequence can be expressed in a closed-form way completely algorithmically. For details and further
properties of C-finite (and related) sequeneces, see [KP11].

Definition 3 (Pisot sequences). Denote by Er(x,y) the integer sequence defined by the recurrence

a0 = x

a1 = y

an =

⌊
a2n−1

an−2
+ r

⌋
, n = 2, 3, . . .

where 0 < x < y are integers and r is a real constant in [0, 1]. The class of sequences Er(x,y)
so defined are the Pisot sequences, defined by Charles Pisot in 1938 [Pis38; Boy78; ESZ16]. In
their original formulation, the parameter r was fixed as 1/2. In this case, the definition of an is
synonymous with the integer nearest to a2n−1/an−2, rounding up in the case of a tie.

The Pisot sequences have some interesting properties and connections to other areas, but we
are interested in the following fact: Some Pisot sequences are C-finite. For instance, the sequence
E1/2(5, 17) satisfies

an = 4an−1 − 2an−2, n > 2.

However, some Pisot sequences merely seem to be C-finite, but actually are not! For example,
E1/2(30, 989) satisfies

an = 33an−1 − 2an−2 + 30an−3 − 11an−4

for 4 6 n 6 15888, but the equality breaks down at n = 15889 (!). Before the results in [ESZ16],
explaining this surprising behavior was an open question. The answer is neatly contained in the
following theorem.

Theorem (Sloane and Zeilberger). Let {an}n>0 be a C-finite sequence. If the largest root of the
characteristic equation of {an} is the only root outside of the unit circle, then {an} satisfies the Pisot
recurrence

an+1 =

⌊
a2n−1

an−2
+ r

⌋
(0 < r < 1)

asymptotically. That is, it satisfies the recurrence for all n > n0, where n0 is some computable
constant. In particular, to check if Er(x,y) = {an}, it suffices to check the finitely many terms with
n 6 n0.

Before moving on, let us explore an interesting connection between the Fibonacci numbers and
the Pisot sequences. The Fibonacci sequence {Fn} has characteristic equation

x2 − x− 1 = 0.

There are two roots, only one of which is outside of the unit circle. It follows that {Fn} is asymp-
totically a Pisot sequence. In particular, working through the proof in [ESZ16], we can see that it
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works for n > 4 when r = 1/2. Therefore, {Fn} consists of the initial terms {0, 1, 1, 2} prepended to
the Pisot sequence E1/2(3, 5). It is easy to observe this computationally:

Fn : [0, 1, 1, 2,3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . ]

E1/2(3, 5) : [3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . ].

We can also classify Pisot sequences that seem to be C-finite. Essentially, if the characteristic
equation has two roots outside of the unit circle, and one is very close to the circle, then the relation
will break down after many terms. The exact n where the relation breaks down can be predicted.
For more details, see [ESZ16].

3.2 Computational problems

We want to know if a given Pisot sequence is C-finite. There is a simple algorithm to do this,
sketched in [ESZ16]. We break the algorithm into two parts:

1. Guess a possible linear recurrence.

2. Verify that the conjectured recurrence holds asymptotically, and check the finitely many terms
before the recurrence begins to hold.

Guessing linear recurrences

To determine if a Pisot sequence is C-finite, we must first determine what C-finite sequence it
might be. Fortunately, we do not need to be clairvoyants to accomplish this. A simple linear
algebra routine will suffice.

Suppose that the sequence {an}n>0 satisfies the d-order recurrence

an =

d∑
k=1

ckan−k.

Then, the following system in {ck}
d
k=1 would have a solution:

ad−1c1 + ad−2c2 + · · ·+ a0cd = ad

adc1 + ad−1c2 + · · ·+ a1cd = ad+1

...

a2d−2c1 + a2d−3c2 + · · ·+ ad−1cd = a2d−1.

(3.1)

All we need to do is solve this system of equations for the coefficients. This is entirely routine, in
the sense that a computer can do them.

Therefore, if a sequence {an}n>0 is C-finite, then we can determine the coefficients by computing
and solving systems of the form (3.1) for finitely many d. If we think that a sequence satisfies such
a recurrence, then we can check as many values of d as desired. Should one yield a solution, then
we have a conjectured recurrence. This algorithm cannot disprove a linear recurrence, but it can
give a lower bound for the order that such a linear recurrence must have.
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Pisot algorithm

Armed with the tools to guess linear recurrences, the procedure to determine whether or not a Pisot
sequence is C-finite is simple. First, we determine a canditate C-finite sequence. Then, following
the results in [ESZ16], we check to see if only one root of the resulting characterstic equation is
outside of the unit circle. If this is the case, then we know that the C-finite sequence is eventually
a Pisot sequence. We need only check that sufficiently many terms of the C-finite sequence agree
with the Pisot sequence. That is, we may prove this by example.

Despite the technical arguments used to develop it, this procedure is quite simple. It distills
to computing the roots of a polynomial and making comparisons. Any decent computer algebra
system can compute roots or approximate them accurately, so the task is more about evaluating
programming capabilities than mathematical capabilities.

3.3 Expressive complexity analysis

For our complexity analysis we shall compare two bodies of code: Doron Zeilberger’s Pisot Maple
package, and a bundle of Python code from various sources to solve the Pisot problem. This bundle
includes SymPy’s sequences module and the author’s own pisot module.

The method taken to analyze the code is as follows: Concatenate all relevant source code
into a single file, then apply the language specific program to evaluate the Halstead metrics on the
combined source file. Both programs run at the procedure level, so every procedure has its Halstead
metrics evaluated individually. The results of this operation are fed into a pandas dataframe for
further analysis and plotting. The statistical summary of this analysis is in Tables 3.1 and 3.2.

A cursory glance at our statistical summary makes it clear that Python has superior scores
in nearly every Halstead metric. In particular, note that the maximum observed difficulty in the
Python procedures is only just beyond the 50th percentile observed for the Maple procedures for
the same metric. For the effort metric, Python’s maximum is only just beyond the 75th percentile
of observed difficulties in Maple. The situation is similar for the remaining metrics.

In addition to tables summarizing the datasets, Figures 3.1 and 3.2 provide some graphical
perspective. In them, we see that most Python procedures we analyzed are relatively short. The
shortest Maple procedures match these in effort and difficulty, but as length grows the Python looks
like it just barely begins undercutting the Maple dataset. Though tempting, we should refrain from
making the conclusion that this pattern holds generally; at this stage of our venture we simply do
not have enough data to support it. Our figures do, however, strongly motivate choosing problems
with lengthier procedures and larger code bases.

Finally, to drive home the results, we have displayed histograms of log-effort and log-difficulty
in Figures 3.3 and 3.4. The log scale makes it easier to compare the relative magnitude of effort and
difficulty across the two languages. From the figures, we see that the analyzed Maple procedures
tend to have effort and difficulty many times that of their Python counterparts.

3.4 Qualitative discussion

For our qualitative discussion, we shall focus on an important subroutine of the Pisot algorithm.
During the course of its execution, the Pisot algorithm must determine the second largest root of
the characteristic equation of a C-finite sequence. In Zeilberger’s Pisot.txt, this is accomplished
in the procedure Pis. In the author’s pisot.py, this is accomplished in pisot root. We shall
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vocabulary length volume difficulty effort

count 45 45 45 45 45
mean 27.18 50.60 265.64 7.76 3300.40
std 18.55 50.32 325.41 5.39 5756.45
min 3.00 3.00 4.75 0.50 2.38
25% 11.00 15.00 53.77 3.33 182.59
50% 25.00 38.00 167.18 7.64 1254.19
75% 33.00 59.00 289.51 10.11 4317.97
max 95.00 283.00 1859.27 23.47 29980.71

Table 3.1: Summary of Maple expressive complexity statistics.

vocabulary length volume difficulty effort

count 44 44 44 44 44
mean 9.59 13.18 54.42 1.61 241.68
std 10.34 20.39 115.60 1.50 887.33
min 2.00 2.00 2.00 0.50 1.00
25% 3.00 3.00 4.75 0.50 2.38
50% 6.50 6.50 17.58 1.10 21.25
75% 11.00 12.50 43.02 1.94 97.86
max 52.00 121.00 689.75 8.37 5774.68

Table 3.2: Summary of Python expressive complexity statistics.

compare and contrast language features qualitatively, in an effort to determine why our quantitative
measurements are as they are.

Source listings for these procedures are given in Section 3.5. The important four are Listing 3.1,
Listing 3.2, Listing 3.3, and Listing 3.5. Listing 3.1 and Listing 3.3 are the implementations of
the basic Pisot algorithm in Maple. They are the logic and root finding procedures, respectively.
Listing 3.2 and Listing 3.5 serve the same purpose for Python.

Complexity encapsulation

First, we should address the input types of our procedures. We have stripped all comments from
the source listings for brevity, so it may not be clear what is being passed around. The Maple
procedure Pis represents C-finite sequences as a list of lists with two elements. The first list
contains the coefficients of the recurrence, and the second list contains the initial values. For
instance, the Fibonacci sequence could be represented as

[[1, 1], [0, 1]].

The Python function pisot root expects a CFinite class, a class which implements various useful
functions on C-finite sequences. For instance, the class has degree and coeffs attributes and can
be sliced to get values, as in

fib[:6] = [0, 1, 1, 2, 3, 5].
This asymmetry in input types may seem unfair, but it reflects the asymmetry in how embedded

classes are in the respective languages. Python classes are “first class” citizens; everything in Python



16 CHAPTER 3. C-FINITE AND PISOT SEQUENCES

0 20 40 60 80 100 120
length

0

2000

4000

6000

8000

10000

ef
fo

rt
Effort versus length comparison

Maple
Python

Figure 3.1: Scatterplot comparing effort against length for Maple and Python code to solve the Pisot
problem. Python has clusters of low length, but it is hard to discern a relative pattern for
longer length procedures. (Two outliers of the Maple dataset are omitted for clarity. They lie
far up and to the right of the displayed points.)

is a class or an instance of a class, and implementing new objects is often the most straightforward
way to abstract behavior. In Maple, classes are “second class” citizens; Maple classes were only
implemented in 2012 with the release of Maple 16, and they are largely relegated to the background
of the documentation. The result of this relegation, as we can see through Zeilberger’s code, is that
complex data types with shared behavior are considered on an ad-hoc basis. This is one area where
Python is the clear favorite for expressive complexity.

For example, consider this operation from the first line of Pis:

[solve(x^nops(C[2])-add(C[2][i]*x^(nops(C[2])-i),i=1.. nops(C[2])))]:

The variable C is the input list representing a C-finite sequence. To understand this line, a pro-
grammer must understand the structure of C. A comment could explain it or a programmer could
memorize it, but these solutions take time and ignore the role that language design can play. This
is exactly the problem that a record type could solve, but Maple’s record system is particularly
weak. Here, an experienced user has opted to create a complicated, list-based solution.

Contrast this situation with line 2 of Listing 3.5:

c_seq.characteristic_roots ()



3.4. QUALITATIVE DISCUSSION 17

0 20 40 60 80 100 120
length

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

di
ffi

cu
lty

Difficulty versus length comparison
Maple
Python

Figure 3.2: Scatterplot comparing difficulty against length for Maple and Python code to solve the Pisot
problem. Python and Maple begin on a similar trajectory, but it appears that Python begins to
undercut Maple for longer lengths. This figure, along with Figure 3.1, suggests that we should
analyze longer Python programs to see if this pattern continues.

Using the CFinite class, the root-finding operation is abstracted into a single method call which
clearly indicates its purpose. The complicated line in the Maple snippet still exists, but it has been
abstracted by the CFinite class where the user will not have to think about it.

Of course, in principle the complicated Maple line 2 in Pis could have have been abstracted
into a function call or a Maple class. However, it was not. In principle a programmer could always
make optimal design choices, but they often do not. Programming languages should encourage and
lower the barrier to making good design choices. Here, Maple does not.

Fundamental datatypes

A language’s built-in datatypes, when properly designed and used, can immensely reduce the ex-
pressive complexity of programs. We previously used Listing 3.3 as a springboard to discuss Maple’s
lack of coherent classes and records, but its built-in datatypes mostly match Python’s, with some
peculiarities. In particular, minor modifications to the Maple Listing 3.3 can make it essentially
match the Python Listing 3.5.

The fundamental container datatypes for Maple are lists and sets; on top of these, Python adds
a dictionary datatype. Maple lacks a strict dictionary datatype, but allows arbitrary indexing of
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Figure 3.3: Histogram of log-effort comparing Python and Maple. This demonstrates the relative difference
between the two values. That Python’s histogram is concentrated further to the left than
Maple’s signifies that Python generally has lower effort.

symbolic variables. For example:

1 x["foo"] := 1:

2 x["foo"]; # Evaluates to 1.

This feature does not feature prominently in the official Maple documentation, so it is rarely used.
Nonetheless, Maple can mimic dictionary datatypes.

The decision algorithm sketched in [ESZ16] is only suitable for certain kinds of Pisot and C-finite
sequences. In particular, if 1 is a root of the characteristic equation, then it should be ignored. If
it is the only root, then the procedure breaks down. Thus, having the roots, we must remove 1 and
check if it was the only root. Three snippets to accomplish this are shown in Figure 3.5.

Looking at the snippets in Figure 3.5, it would seem that Maple has some bizarre hoops to jump
through for list operations, which may Python an edge in expressive complexity. However, this is
actually just the consequence of working with the wrong datatype. The code from [ESZ16] chose
to keep its roots as a list when a set would be more beneficial. This small change results in a much
simplified procedure, as shown in Listing 3.4.
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Figure 3.4: Histogram of log-difficulty comparing Python and Maple. That Python’s histogram is concen-
trated further to the left than Maple’s signifies that Python generally has lower effort.

Symbolic quality

Though expressive complexity is an important consideration when choosing a language for symbolic
computation, it cannot be the only one. In particular, the quality of the symbolic computation
should be considered. Thus, in this subsection we will describe the symbolic capabilities of Maple
and Python.

First, it should be obvious that Python is imbued with symbolic capabilities by the library
SymPy rather than having them built-in. This is not an excessive hurdle to overcome with modern
package managers, but it does require some familiarity with computer systems. Maple has baked-in
symbolic capabilities. In fact, variables in Maple are assumed to be symbolic by default, as opposed
to Python where they must be declared as such with the SymPy library. This adds a further slight
inconvenience to Python.

The bulk of the computer algebra in this problem comes in the root finding procedure. Both
computer algebra systems handle this in fundamentally the same way. Maple has a built-in solve

function, while SymPy implements a solve function, which are almost identical. Maple has no
syntactical advantage over Python in this regard. The quality and speed of symbolic solutions
and numerical approximations are roughly the same. This is to be expected; any self-respecting
computer algebra system can handle polynomials.
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if 1 in roots:

del roots [1]

if not roots:

return None

(a) Python.

lu := convert ({op(lu)} minus

{1},list):

if lu = [] then

RETURN(FAIL):

fi:

(b) Maple from [ESZ16].

while member(1, lu, ’index ’)

do

subsop(index=NULL , lu):

od

if lu = [] then

RETURN(FAIL):

fi:

(c) Alternative Maple code without type
conversion. The while-loop is necessary
to remove all instances of 1 from lu.

Figure 3.5: Comparison of the “deletion” operation in Python dictionaries and Maple lists. Though the
Python operations are clearly simpler here, the Maple operations can easily compete with
Python when the program is properly designed. This is demonstrated in Listing 3.4.

Expressive complexity summary

Maple’s lack of a coherent class or record system makes it difficult to abstract complexity in com-
plicated expressions. The language does not encourage sensible design decisions when it should.
However, aside from some peculiarities, Maple’s built-in datatypes match closely with Python, to
the point that its operations could be put in 1-1 correspondence. Maple and Python seem evenly
matched for basic symbolic computations like root finding.
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3.5 Source code listings

1 PtoR := proc(x,y,r,L,K) local C,gu1 ,gu2 ,i,ku1 ,ku2:

2 if r <= 0 or r >= 1 then

3 print("r must be strictly between 0 and 1 for this procedure"):

4 RETURN(FAIL):

5 fi:

6
7 C := GuessRecAd(PS(x,y,r,2*L+10),L):

8 if C = FAIL then

9 RETURN(FAIL):

10 fi:

11
12 gu1 := SeqFromRec(C,K):

13 gu2 := PS(x,y,r,K):

14
15 if gu1 <> gu2 then

16 for i from 1 to K while gu1[i]=gu2[i] do od:

17 RETURN ([FAIL ,C,i,Pis(C)]):

18 fi:

19
20 ku1 := evalf(PisInd(C,r,1,K) ,10):

21 ku2 := evalf(PisInd(C,r,trunc(K/2),K) ,10):

22
23 if C[2] = [2,-1] then

24 [C, ku1 , ku2 , LINEAR ]:

25 elif Pis(C) > 1 then

26 [FAIL , C, FirstDev(x,y,r,C), Pis(C)]:

27 else

28 [C, ku1 , ku2 , Pis(C)]:

29 fi:

30 end:

Listing 3.1: A cleaned and simplified version of PtoR from [ESZ16].
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1 def pisot_to_cfinite(pisot , guess_length , check_length):

2 if pisot.r <= 0 or pisot.r >= 1:

3 raise ValueError("r must be strictly between 0 and 1 for this

procedure")

4
5 c_seq = pisot.find_cfinite_recurrence(guess_length)

6
7 if not c_seq:

8 return None

9
10 if pisot [: check_length] != c_seq [: check_length ]:

11 return None

12
13 root_abs = pisot_root(c_seq)

14
15 if root_abs > 1:

16 return None

17
18 return c_seq

Listing 3.2: A cleaned version of pisot to cfinite.
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1 Pis:=proc(C) local x,lu ,i,aluf ,mu:

2 lu := [solve(x^nops(C[2])-add(C[2][i]*x^(nops(C[2])-i),i=1.. nops(C[2]))

)]:

3
4 if nops(lu) <> nops(C[1]) then

5 RETURN(FAIL):

6 fi:

7
8 if member(1,lu) then

9 lu := convert ({op(lu)} minus {1},list):

10 if lu=[] then

11 RETURN(FAIL):

12 fi:

13 fi:

14
15 aluf :=1:

16 for i from 2 to nops(lu) do

17 if abs(evalf(lu[i])) > abs(evalf(lu[aluf])) then

18 aluf := i:

19 fi:

20 od:

21
22 mu := evalf ([op(1.. aluf - 1, lu),op(aluf +1.. nops(lu), lu)]):

23
24 max(seq(abs(mu[i]), i=1.. nops(mu))):

25 end:

Listing 3.3: A cleaned and simplified version of Pis from [ESZ16].
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1 Pis:=proc(C) local x,lu ,i,aluf ,mu:

2 lu := [solve(x^nops(C[2])-add(C[2][i]*x^(nops(C[2])-i),i=1.. nops(C[2]))

)]:

3
4 if nops(lu) <> nops(C[1]) then

5 RETURN(FAIL):

6 fi:

7
8 lu := {op(lu)} minus {1}:

9
10 if lu = {} then

11 RETURN(FAIL):

12 fi:

13
14 lu := {seq(evalf(abs(root)), root in lu)}:

15 max_k := max[index](lu):

16 subops(max_k=NULL , lu):

17
18 max(lu):

19 end:

Listing 3.4: A “complexity optimized” version of Pis from [ESZ16].

1 def pisot_root(c_seq):

2 roots = c_seq.characteristic_roots ()

3
4 if sum(roots.values ()) != c_seq.degree:

5 return None

6
7 if 1 in roots:

8 del roots [1]

9
10 if not roots:

11 return None

12
13 norms = [re(abs(root).evalf()) for root in roots.keys()]

14
15 max_index = norms.index(max(norms))

16 del norms[max_index]

17
18 return max(norms)

Listing 3.5: A cleaned version of pisot root. The underlying CFinite class removes much of the mystery
of Listing 3.3. Python’s cleaner list handling eliminates loops and verbose type conversions.
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1 def characteristic_poly(self , var=sympy.Dummy("r")):

2 d = self.degree

3 return (var**d

4 - sum(var **(d - k - 1) * self.coeffs[k]

5 for k in range(self.degree)))

6
7 def characteristic_roots(self):

8 return sympy.solve(self.characteristic_poly (), dict=True)

Listing 3.6: A cleaned version of the characteristic equation handling from the CFinite class.





Chapter 4

Propositional Logic and Boolean
Satisfiability

Automated theorem proving has two goals: (1) to prove theorems and
(2) to do it automatically. Over the years experience has shown these
goals are incompatible.

Melvin Fitting, First-Order Logic and Automated Theorem Proving
[Fit12].

Many important mathematical statements can be translated into the form, “If condition A is true,
then condition B must also be true.” Or, for those so inclined, “A =⇒ B.” This is a particular
kind of statement in propositional logic, a logic which combines elementary propositions to construct
more complex statements. Propositional logic is introduced to mathematics students fairly early
in their education to familiarize them with manipulating logical structure. Once the basics are
covered (the contrapositive, de Morgan’s laws, etc.), it is usually abandoned for more useful topics
such as sets, induction, and so on. This is a real shame, because propositional logic is a ripe target
for automated theorem proving. In particular, every statement of the form A =⇒ B can be checked
completely automatically in propositional logic. We shall compare implementations of propositional
logic in Maple and SymPy.

4.1 Definitions and preliminaries

Our main question is this: Given a propositional hypotheses S and a propositional conclusion X,
can we decide if X follows from S? Written another way, if S = {A1, . . . ,An}, is the statement

A1 ∧A2 ∧ · · ·∧AN =⇒ X (4.1)

a tautology?

Consider some examples: Does the statement (A =⇒ B) =⇒ A always imply A? Or, in other
words, is

((A =⇒ B) =⇒ A) =⇒ A (4.2)

27
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a tautology? Do the statements A =⇒ P, B =⇒ Q, and A∨ B imply P ∨Q? That is, is

(A =⇒ P)∧ (B =⇒ Q)∧ (A∨ B) =⇒ P ∨Q (4.3)

a tautology? Further consider the following formula:

(P =⇒ (Q =⇒ R)) =⇒ ((P =⇒ Q) =⇒ (P =⇒ R)). (4.4)

Is this a tautology? It is evident that such formulas become difficult to verify as their complexity
increases1.

There are fairly efficient, mechanical procedures to check the validity of most propositional
formulas. To adequately describe these procedures, we must first give an adequate definition of
propositional logic.

Briefly, propositional logic is the familiar boolean algebra formed with the usual “logical and,”
“logical or,” and “negation” operators over the set {t, f}. Its variables are propositions, implicitly
interpreted as “basic statements” which can be either true or false. Its sentences look like this:

A∧ B, (¬P1 ∧ P2)∨ P3, ¬A∨A, A∧ ¬A. (4.5)

We would say that the first two are true sometimes, the third is always true, and the last is always
false.

A more formal definition of propositional logic requires a bit of work. The syntax of propositional
logic—the underlying language—and the semantics of propositional logic—truth, operations and
so on—must both be defined. We shall now give these definitions.

The “properly formed sentences” in propositional logic are the propositional formulas.

Definition 4 (Propositional formulas). Our language is built from two parts:

1. A countable set of distinct symbols, {P1,P2, . . . }, and two constants > and ⊥. The former
are called the propositional letters, while the latter two are thought of as true and false,
respectively. These values together are the atomic formulas.

2. A set of binary connectives (∧, ∨, and so on) and the unary connective ¬.

The propositional formulas constitute the smallest set P2such that:

1. P contains all atomic formulas.

2. If X ∈ P, then ¬X ∈ P.

3. For any binary connective ◦, if X, Y ∈ P, then X ◦ Y ∈ P.

For example, every sentence in (4.5) is a propositional formula.
The definition of P as the smallest such set lets us prove various things about P by induction

on the size of formulas, the foremost application of which is to prove that propositional formulas
can be uniquely parsed. We omit this proof, trusting that the reader is sufficiently familiar with
propositional logic to continue.

1These formulas are tautologies. They are, respectively, Peirce’s Law [Pei85], a simple argument, and Frege’s
second propositional axiom [Bus98].

2At least one set—the set of all strings formed from the given symbols—satisfies the stated properties, and the
intersection of such sets also satisfies the stated properties. The propositional formulas are the intersection of all
such sets.
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Definition 5 (Boolean valuations). A boolean valuation is a map v : P → {t, f } such that the
following properties hold:

1. v(>) = t; v(⊥) = f , where > and ⊥ are the propositional constants true and false. (The
values t and f are formally different from > and ⊥, but largely for historical reasons.)

2. v(¬X) = ¬v(X) for all propositional formulas X, where ¬ is the negation operator.

3. v(X ◦ Y) = v(X) ◦ v(Y) for all propositional formulas X and Y and all binary connectives ◦.

Note that at this point we further require all connectives in the language of propositional logic
to be operators on the set {t, f }. For instance, the binary connective ∧ is an operator defined as the
“logical and.” That is, x∧ y = t iff both x and y are t. Thus there are actually only finitely many
binary connectives to consider.

Being recursively defined, boolean valuations are entirely determined by their values on the
propositional letters. That is, they amount to deciding which of the variables in an expression are
“true” and which are “false.” We are are especially interested in those propositional formulas which
must be true because of their structure. The following definition captures this idea, and connects
our syntax with our semantics.

Definition 6. A propositional formula X is a tautology iff v(X) = t for all boolean valuations v.

This is equivalent to the common “truth table” definition of a tautology. As we might expect,
the propositional formulas P ∨ ¬P and ¬¬> are tautologies.

Definition 7. A propositional formula X is a propositional consequence of a set of propositional
formulas S iff v(X) = t for every boolean valuation v that is true for every formula in S. We also
write S |= X, and say that S entails X. (Note that X is a tautology iff ∅ |= X.)

Propositional consequence is our real goal. Propositional formula (4.1),

A1 ∧A2 ∧ · · ·∧An =⇒ X,

is a tautology iff

{A1,A2, . . . ,An} |= X.

Thus we begin the sequel with a discussion of how this decision problem might be solved. In that
discussion, the following definition will be crucial.

Definition 8. A set of propositional formulas S is satisfiable iff v(S) = {t} for some boolean
valuation v.

4.2 Computational problems

Given a set of propositional formulas S and a specific propositional formula X, we want to know
if S |= X. There are many ways to do this, but we must be careful to not fall into a trap. The
statement S |= X is true if and only if v(X) = t for every boolean valuation v such that v(S) = {t}.
This is equivalent to stating that the set S ∪ {¬X} is not satisfiable. That is, no boolean valuation
can map all of its members to t. The problem of checking a propositional consequence is therefore
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a special case of the boolean satisfiability problem (SAT), famously the first problem proven to be
NP-complete3.

NP-completeness is often taken as stating that a problem is “very difficult.” This is not entirely
accurate, but it is true that näıve solutions to the SAT problem will likely perform poorly. Fortu-
nately, SAT remains a popular research area due to its simple statement and many applications in
computer science, engineering, and logic. More sophisticated methods developed in the past century
have led to SAT solvers that can often solve “real world” SAT problems fairly quickly—despite its
pernicious “NP-complete” label.

As a foil for the more sophisticated SAT solvers, consider the “truth table” method for tautology
checking. Given a propositional formula X with n variables in it, there are 2n different possible as-
signments (boolean valuations) that will affect its truth value. By systematically searching through
all 2n of these, we can check if X evaluates to true under all of them. If it does, then X is satisfiable;
if it does not, then X is not satisfiable. The 2n different valuations are often written in a table
alongside X, hence the name. This is clearly a correct algorithm with exponential runtime. The
reader is invited to check all of (4.2), (4.3), and (4.4) using this method, or to examine the truth
table proof of (4.2) in Table 4.1.

A B (( A =⇒ B ) =⇒ A ) =⇒ A
T T T T T T T T T
T F T F F T T T T
F T F T T F F T F
F F F T F F F T F

Table 4.1: Truth table proof of Peirce’s law (4.2). Note that the main connective column, the column
which determines the truth value of the statement, contains only T’s, so the statement must be
a tautology.

The basis for many more sophisticated SAT solvers is the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm [ZS00]. In particular, the SAT solver used in SymPy is based directly on the
DPLL procedure. The initial method (the DP method) is due to Davis and Putnam [DP60]. It was
then refined by Davis, Logemann, and Loveland [DLL62].

The basic idea of the DPLL algorithm is to assign propositional letters truth values until a
contradiction occurs, then backtrack to the problematic assignment. Backtracking alone is often
a superior search method—though with O(2n) worst-case runtime—but the DPLL also includes
numerous heuristics to improve its performance. For example, if a propositional letter is in a clause
by itself, then it can be assigned a final value immediately. For example, to satisfy

A∧ (B∨ C),

it is clear that A must be assigned t. Such heuristics, simple though they may be, make a large
difference.

Interesting advances have been made in SAT solvers in recent years. For example, the MapleSAT
solver has employed machine learning heuristics along with other modern SAT techniques to achieve
a high rate of success. MapleSAT has placed highly among the various annual SAT competitions,

3That is, any polynomial time solution to SAT would imply a polynomial time solution to every NP problem.
This is the famous Cook–Levin theorem; see [Coo71].
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vocabulary length volume difficulty effort

count 26 26 26 26 26
mean 18.154 32.654 168.791 5.470 2382.534
std 20.372 45.321 279.649 6.037 5503.900
min 2.000 2.000 2.000 0.500 1.000
25% 2.000 2.000 2.000 0.500 1.000
50% 13.500 17.000 61.913 3.398 260.740
75% 22.500 34.000 153.801 9.131 1440.492
max 75.000 162.000 1009.069 22.337 22539.100

Table 4.2: Summary of Maple expressive complexity statistics.

and is now the deault SAT solver employed in Maple itself. See the thesis of Jia Liang [Lia18] for
more details.

4.3 Expressive complexity analysis

For our complexity analysis we shall compare two bodies of code: SymPy’s logic module and
Maple’s Logic package. The method to analyze the code is mostly identical to the previous chap-
ter. For Python, we concatenate all relevant source code into a single file, then apply the radon

program to evaluate the Halstead metrics on the single source file. For Maple, we simply apply the
SoftwareMetrics[HalsteadMetrics] procedure to the Logic package. As before, both programs
run at the procedure level, so every procedure has its Halstead metrics evaluated individually. The
results of this operation are fed into a pandas dataframe for further analysis and plotting. The
statistical summary of this analysis is in Tables 4.2 and 4.3.

As before, Python has superior scores. The maximum Python scores are sometimes orders
of magnitude lower than Maple’s maximums. As before, we have given graphical evidence in
Figures 4.1 to 4.4. The conclusions drawn from those are roughly the same as before.

Note that we are once again lacking Python procedures long enough to compare with long
Maple procedures, but that this is now a different situation. Before, we were comparing user-
written Python code with user-written Maple code. We are now comparing library Python code
with library Maple code. That is, the logic modules and packages we are comparing were written
by the respective computer algebra system maintainers rather than their users. The problem has
persisted across those two different scenarios, which might suggest that Maple as a language favors—
for some reason—longer procedures. Longer procedures generally obtain higher Halstead metrics,
which could explain the large differences seen here.

4.4 Qualitative discussion

For our qualitative discussion we shall focus on three short programs to apply the resolution rule.
The resolution rule states that we can resolve out complementary propositional letters in disjunc-
tions. That is, for propositional letters ak, x, and bk,

{a1 ∨ · · ·an ∨ x, b1 ∨ · · ·bm ∨ ¬x} |= a1 ∨ · · ·an ∨ b1 ∨ · · ·∨ bm.
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vocabulary length volume difficulty effort

count 56 56 56 56 56
mean 9.536 13.679 50.045 2.032 174.881
std 6.655 11.543 54.930 1.552 304.693
min 2.000 2.000 2.000 0.500 1.000
25% 4.000 6.000 12.000 0.667 8.000
50% 7.000 9.000 26.898 1.688 42.730
75% 14.000 19.500 73.682 2.821 232.972
max 26.000 54.000 247.588 7.206 1784.090

Table 4.3: Summary of Python expressive complexity statistics.
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Figure 4.1: Scatterplot comparing effort against length for Maple and Python code for propositional logic.
While Python has clusters of low length, it is hard to tell if it undercuts Maple in any real way
without more data.

In other words, given two clauses that are disjunctions, if any propositional letter appears negated
in the other, then it can be removed and the resulting clauses joined under a disjunction. Repeated
application of this rule forms basis of many automated theorem provers. See, for instance, [Fit12].

Maple and Python programs to apply the resolution rule are presented in Listings 4.1 and 4.2.
The solutions take fundamentally different approaches to representing logical operators. As an
interesting foil, Listing 4.3 contains a Haskell implementation of the resolution rule similar to
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Figure 4.2: Scatterplot comparing difficulty against length for Maple and Python logic code. For lower
lengths, it seems that both languages lie on the same trajectory. It is hard to tell if there is
any divergence between the languages for longer programs. This figure, along with Figure 3.1,
suggests that we should analyze longer programs.

Maple’s approach. Simple examples of propositional logic in Maple and Python are presented in
Listings 4.4 and 4.5.

Length and recursive data

The first striking difference between Listings 4.1 to 4.3 is the length of the programs. The Maple
version clocks in at 36 lines, while the Python version is less than half that at 13 lines. Haskell, with
no computer algebra support, yields a solution in 22 lines. Line count is not an exact representation
of the Halstead “length” metric, but it is a starting point. The Maple program is significantly longer
than its Haskell and Python counterparts. This lends some credence to a conjecture in the previous
section; Maple has higher Halstead metrics because its programs tend to be longer.

The primary reason for the difference in lengths is the structural design of logic in each language.
In SymPy, the Or class serves as a general n-ary disjunction with arguments kept in a tuple. This is
possible because disjunction is associative and commutative, and therefore easily generalizes to any
finite number of arguments. In Maple, the disjunction is implemented as the binary &or operator.
A series of disjunctions in Maple is actually a series of nested disjunctions, not one disjunction
applied to many arguments. That is, the list of arguments is essentially stored in a recursive
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Figure 4.3: Histogram of log-effort comparing Python and Maple.

datatype. A rough graphical approximation of this is illustrated in Figure 4.5. This difference
means that working with boolean objects in Maple beyond the superficial level brings hurdles to
overcome, as our attention is taken away from the logic, and into the underlying structure.

Looking at Figure 4.5, it is tempting to think that Maple’s choice to treat operators as nested
leads to more complicated programs, but this is unfair. Recursive datatypes are not necessarily more
complicated. They have been implemented ergonomically in many languages, particularly functional
languages. One such language is Haskell [Jon03]. Listing 4.3 contains disjunction datatype as a
binary data constructor implemented in Haskell, mirroring the spirit of Maple’s disjunction. This
will allow us to compare the expressive complexity of Maple’s solution with a language that takes
roughly the same approach to this problem.

Haskell is especially well equipped to handle recursive data types. This is largely due to pattern
matching, a common feature in functional languages. Pattern matching allows (requires, even)
users to create structured datatypes which are accessed syntactically. That is, datatypes, even
user-created ones, are automatically embedded into the syntax of the language; they are mar-
ried together. This makes working with structured datatypes exceptionally clear in languages like
Haskell.

Maple, on the other hand, does not use pattern matching. Most structured datatypes—lists,
binary expressions, and so on—are accessed using the polymorphic op function. The op function
is difficult to describe, because it operates differently based on what its arguments are. On a
list, it acts as an accessor by index; on a matrix, it both gives size information and elements; on
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Figure 4.4: Histogram of log-difficulty comparing Python and Maple.

a binary expression, it parses the expression into arguments. The downfall of op is precisely its
flexibility. When encountering an application of the op function, the programmer must try to figure
out how the op function will behave on a particular datatype. There is no way to determine this
by inspection, only a manual or some guesswork. Thus the much overloaded op ruins any hope of
joining syntax and semantics.

In particular, compare the unfold dis procedure in Listing 4.1 with the toList procedure
in Listing 4.3. The Maple procedure checks the number of operands in the expression as a base
case. “Number of operands in expression” is semantically separate from the actual datatype under
consideration. The goal is to determine whether or not we are looking at a disjunction or a (possibly
negated) variable. Maple’s syntax provides no built-in way to handle this. The programmer must
simply trust that “one operand in expression” is synonymous with “possibly negated variable.”
Haskell, on the other hand, forces the programmer to specify which case they are considering
through pattern matching. There is (in this case) no other way to handle data in Haskell. Thus,
rather than relying on “number of operands in expression,” the Haskell program specifically asks
“is this a disjunction or a variable?” That is, the syntax and semantics are tied together. This is
an excellent example of good design.

In short, SymPy provides its logical objects in a convenient form. Maple provides its logical
objects in a recursive form, but then fails to provide robust methods to handle them.
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x &or y &or z

x y &or z

y z

(a) Maple disjunction

x | y | z

x y z

(b) SymPy disjunction

Figure 4.5: Maple and SymPy disjunction representation.

Symbolic quality

Maple does not perform obvious simplifications when it would be appropriate. Consider the fol-
lowing example. The function evalb in Maple evaluates a given expression to a boolean for use in
conditional statements. For any symbol x,

evalb(&not (&not x) = x);

evaluates to false. Thus Listing 4.1 applies the BooleanSimplify function whenever two propo-
sitional formulas are compared to ensure that equality is correctly checked. SymPy, on the other
hand, makes such simplifications automatically. For instance, ~(~x) evaluates directly to x. This
allows Listing 4.2 to avoid any tedious calls to a simplification routine.

It is possible that avoiding such simplification would lead to more flexibility in transforming
logical expressions. However, as seen in the previous section, this is already a chore in Maple.

Aside from the listings given here, Maple does benefit from having a cutting-edge SAT solver.
SymPy would likely lag behind in performance unless it adopts an external SAT solver.

Expressive complexity summary

The design of nested expressions in Maple force programmers to grapple with the over-overloaded
op function. As a result, handling logical expressions can be obnoxious in user-defined functions, as
syntax and semantics are divorced. Maple could learn from languages—such as Haskell—with more
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robust structured datatypes. SymPy provides convenient and consistent ways to inspect nested
expressions in general.
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4.5 Source code listings

1 with(Logic):

2
3 unfold_dis := proc(disjunction)

4 if nops(disjunction) = 1 then

5 return [disjunction ];

6 fi:

7
8 left := unfold_dis(op(1, disjunction)):

9 right := unfold_dis(op(2, disjunction)):

10
11 return [op(left), op(right)]:

12 end proc:

13
14 resolve := proc(clause_1 , clause_2)

15 args_1 := unfold_dis(clause_1):

16 args_2 := unfold_dis(clause_2):

17
18 resolvants := []:

19
20 for x in op(clause_1) do

21 for y in op(clause_2) do

22 neg_x_simp := BooleanSimplify (&not x);

23 x_simp := BooleanSimplify(x);

24 y_simp := BooleanSimplify(y);

25 if neg_x_simp = y_simp then

26 new_1 := select(c -> BooleanSimplify(c) <> x_simp , args_1):

27 new_2 := select(c -> BooleanSimplify(c) <> y_simp , args_2):

28
29 new := [op(new_1), op(new_2)]:

30 resolvants := [op(resolvants), new]:

31 fi:

32 od:

33 od:

34
35 return resolvants:

36 end proc:

37
38 # Example usage.

39 resolve(x &and (&not y), y)

Listing 4.1: Implementation of the resolution rule in Maple with the Logic package. Since Maple lacks
built-in pattern matching, the most straightforward way to “unroll” a sequence of disjunctions
is a recursive function that terminates on expressions with a single operand. The mechanism
to do this obscures the operation’s semantics and hinders readability.
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1 from sympy.logic.boolalg import Or

2
3
4 def resolve(clause_1 , clause_2):

5 args_1 = clause_1.args if clause_1.args else (clause_1 ,)

6 args_2 = clause_2.args if clause_2.args else (clause_2 ,)

7
8 for x in args_1:

9 for y in args_2:

10 if ~x == y:

11 new_1 = [c for c in args_1 if c != x]

12 new_2 = [c for c in args_2 if c != y]

13 yield Or(*( new_1 + new_2))

14
15 # Example usage.

16 resolve(x & ~y, y)

Listing 4.2: Implementation of the resolution rule in Python with the SymPy package.
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1 import Data.List

2
3 data Term = Dis Term Term

4 | Var String

5 | NegVar String

6 deriving (Eq, Show)

7
8 neg :: Term -> Term

9 neg (NegVar s) = Var s

10 neg (Var s) = NegVar s

11 neg _ = error "Only literal negations are implemented!"

12
13 toList :: Term -> [Term]

14 toList (Dis x y) = toList x ++ toList y

15 toList x = [x]

16
17 resolve :: Term -> Term -> [[Term]]

18 resolve clause_1 clause_2 = map resolveOut matchingLiterals

19 where args_1 = toList clause_1

20 args_2 = toList clause_2

21 matchingLiterals = map neg args_2 ‘intersect ‘ args_1

22 resolveOut x = (args_1 \\ [x]) ++ (args_2 \\ [neg x])

23
24 -- Example usage.

25 x = Var "x"

26 y = Var "y"

27 main = print $ resolve (Dis x (neg y)) y

Listing 4.3: Implementation of the resolution rule in Haskell from scratch. Note how straightforward
accessing the elements of a binary datatype through pattern matching is. In particular,
note the effectiveness of pattern matching on the binary data constructor Dis in the toList

function. Save for the standard library Data.List import, this is a self-contained program.
(A Haskell expert could likely improve this implementation by a wide margin, exploiting the
various abstract data classes meant for recursive datatype iteration.)
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1 with(Logic):

2
3 peirce := ((A &implies B) &implies A) &implies A:

4 resolution := ((A &implies P) &and (B &implies Q) &and (A &or B)) &implies

(P &or Q):

5 frege := (P &implies (Q &implies R)) &implies ((P &implies Q) &implies (P &

implies R)):

6
7 print(Tautology(peirce));

8 print(Tautology(resolution));

9 print(Tautology(frege));

Listing 4.4: Checking Equations (4.2) to (4.4) with Maple’s Logic package.

1 from sympy.logic.inference import valid

2 from sympy.abc import A, B, P, Q, R

3
4 peirce = ((A >> B) >> A) >> A

5 resolution = ((A >> P) & (B >> Q) & (A | B)) >> (P | Q)

6 frege = (P >> (Q >> R)) >> ((P >> Q) >> (P >> R))

7
8 print(valid(peirce))

9 print(valid(resolution))

10 print(valid(frege))

Listing 4.5: Checking Equations (4.2) to (4.4) with SymPy’s logic module.





Chapter 5

Indefinite Summation

Civilization advances by extending the number of important operations
which we can perform without thinking about them. Operations of
thought are like cavalry charges in a battle—they are strictly limited in
number, they require fresh horses, and must only be made at decisive
moments.

Alfred North Whitehead, An Introduction to Mathematics [Whi17].

Sums are ubiquitous in mathematics. They are—quite unfairly—relegated to the dregs of analysis
for most students, where they serve as a lifeless prop to develop the Riemann integral or some other
theory. Summation is an important tool in its own right. Numerous combinatorial quantities are
expressible via summations, sums over divisors are common in number theory, and—of course—
errors in analysis can often be broken up into sums. Some sums are well known, such as

n∑
k=1

k =
n(n+ 1)

2
and

n∑
k=1

(
n

k

)
xk = (1 + x)n.

More difficult ones are not: ∑
16k<n2

⌊√
k
⌋
=

2

3
n3 −

1

2
n2 −

1

6
n.

One way to evaluate
∑
ak is to find dk such that

∆dk = dk+1 − dk = ak,

because then
∑
ak =

∑
(dk+1 − dk) telescopes; that is,∑

a6k<b

(dk+1 − dk) = db − da.

Finding such a {dn} is the process of indefinite summation, a discrete analogue to indefinite in-
tegration. There are algorithms to automatically handle the definite and indefinite summation of
wide classes of sequences. Here we shall discuss the indefinite case and compare implementations
of these algorithms in Maple and SymPy.

43
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5.1 Definitions and preliminaries

We will assume that everyone is familiar with basic summation notation, sequences, and so on. We
mostly use the summation notation from Concrete Mathematics [GKP88]. That is, we will write∑

P(k)

f(k)

to mean the sum of f(k) over all integers k satisfying some property P. We will generally assume
that only finitely many integers satisfy P, but some results can be extended to handle infinite sums
as well.

The basic problem in automatic summation this: Can we “automatically” evaluate sums of the
form ∑

a6k<b

f(k)

for arbitrary functions f(k) and limits a and b1? The answer is a resounding yes, given a suitable
definition of “arbitrary.” Namely, we need to have the summand be “nice” in a certain way which
we shall describe later. Before we get there we must discuss some preliminaries.

Definition 9. Given a sequence {f(n)}, the forward difference of f is the new sequence

∆f(n) = f(n+ 1) − f(n).

If F(n) is such that ∆F(n) = f(n), then we call F(n) an antidifference of f(n).

The forward difference is like a “discrete” difference quotient. That is, it is like the quotient

f(n+ h) − f(n)

h
,

where h = 1 is the smallest we can go.
The key property of forward differences is that summing over them yields a telescoping sum

which is trivial to evaluate. As an example, any two antidifferences differ by a constant in n,
because summing over ∆F = ∆G from 1 to n− 1 yields F(n) −G(n) = F(1) −G(1).

This telescoping property is what makes antidifferences crucial. One way to evaluate the sum∑
a6k<b f(k) is to find an antidifference of f(k). Indeed, if f = ∆F, then∑

a6k<b

f(k) =
∑

a6k<b

∆F(k) = F(b) − F(a). (5.1)

The process of finding the antidifference of a given sequence is called indefinite summation.
Once a suitable difference is in hand, formidable sums can be handled quite mechanically. For

instance, it is routine to check the identity

∆

(
n(n− 2)(n− 1)

3
+
n(n− 1)

2

)
= n2.

1Note that the upper limit of the sum is excluded. This is not important; it is only a convention to make later
statements cleaner.
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It follows that ∑
16k<n

k2 =
n(n− 2)(n− 1)

3
+
n(n− 1)

2
− 0

=
n(n− 1)(2n− 1)

6
,

(5.2)

which is the familiar evaluation.
The whole point of summation is to evaluate sums in “closed form.” Generally, this means

something like this: Give an expression equal to
∑

k f(k) which does not include a summation sign.
This is a little vague, but fortunately we have a better way forward. By “closed form,” we mean
hypergeometric, defined next.

Definition 10. A term f(n) is hypergeometric iff

f(n+ 1)

f(n)
=
P(n)

Q(n)
zn

for specific polynomials P and Q and some value z. A series∑
k>0

tkz
k

is hypergeometric if its coefficients tn are hypergeometric terms.

The hypergeometric functions and their sums cover almost every function encountered in prac-
tice. For example, the following functions are all hypergeometric:

n n!
n2 − 1

n+ 2

n!

(2n+ 3)!

(
2n

n

)
.

Each of the following series is easy to see as hypergeometric:

ez =
∑
k>0

zk

k!

sin z =
∑
k>0

(−1)k
z2k+1

(2k+ 1)!

ln(1 + z) =
∑
k>1

(−1)k+1 z
k

k

So, more or less, most things that we run into are either hypergeometric terms or sums of them.
Indefinite summation is not the only way to evaluate sums. Many summands do not have closed-

form antidifferences, yet their definite sums are easy to evaluate. For instance, the sum
∑x

k=0

(
n
k

)
is difficult (read: impossible) to evaluate in closed form for arbitrary x. Yet

∑n
k=0

(
n
k

)
= 2n is a

well-known definite sum. We will not go further here, but we refer the interested reader to [PWZ96],
particularly Chapter 6.
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5.2 Computational problems

We have already laid out the fundamental problem for consideration. We want to evaluate the sum∑
a6k<b

f(k)

by finding an antidifference of f; that is, a function F such that f = ∆F. An application of (5.1) will
finish the job.

Finding an antidifference for hypergeometric f is a solved problem. The solution is given by
Gosper’s algorithm. If f(k) is a hypergeometric term, then Gosper’s algorithm will either output
a hypergeometric antidifference, or state that none can exist. In this case, the sum cannot be
expressed in “closed form,” i.e., as the difference of two hypergeometric terms. We shall give a
sketch of Gosper’s algorithm, then demonstrate its application to the nice special case of sums of
polynomial terms.

In the sketch we omit important details such as existence results, subalgorithms, and so on. Let
us agree that when we are tacit on such things, the skeptical reader should consult Chapter 5 of
[PWZ96] for a full explanation.

Sketch of Gosper’s Algorithm

Given a hypergeometric term tn, the goal of Gosper’s algorithm is to find a hypergeometric term
zn such that

zn+1 − zn = tn. (5.3)

The big idea is that this problem can be reduced from finding hypergeometric solutions, to rational
solutions, and then to polynomial solutions of progressively simpler and simpler recurrences.

Gosper’s algorithm runs as follows:

1. Since tn is hypergeometric, r(n) = tn+1/tn is some rational function of n. Factor r(n) as

r(n) =
a(n)

b(n)

c(n+ 1)

c(n)

for some polynomials a, b, and c, subject to the condition that gcd(a(n),b(n + h)) = 1 for
all nonnegative integers h. This can be done automatically.

2. Find all polynomial solutions x(n) to the recurrence

a(n)x(n+ 1) − b(n− 1)x(n) = c(n).

This can be done by checking a few initial conditions and then solving a system of linear
equations for coefficients. If no polynomial solutions exist, then the sum cannot be expressed
as a hypergeometric term plus a constant.

3. The general antidifference zn is given by

zn =
b(n− 1)

c(n)
x(n)tn.
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Example

Gosper’s algorithm is more technical than anything we have considered in detail thus far, so we
will give an example of its application in an especially simple case. Earlier, in (5.2), we evaluated∑n

k=0 k
2 based on indefinite summation. Here, we will show how to do this automatically.

Following Gosper’s algorithm, set tn = n2. Then,

r(n) =
tn+1

tn
=

(n+ 1)2

n2
.

It it clear that we can take a(n) = b(n) = 1, and c(n) = n2. We now look for polynomial solutions
to x(n + 1) − x(n) = n2. Both sides are polynomials, so they must have the same degree. The
leading terms on the left-hand side cancel, meaning that deg x = degn2 + 1 = 3. Thus,

x(n) = αn3 + βn2 + γn+ ξ

for some undetermined constants α, β, γ, and ξ. Plugging this into our equation for x(n) and
equating coefficients gives us the equations

3α− 1 = 1

3α+ 2β = 0

α+ β+ γ = 0.

These have the unique solution (α,β,γ) = (1/3,−1/2, 1/6), with ξ arbitrary. If we take ξ = 0, this
gives

x(n) =
n3

3
−
n2

2
+
n

6
=
n(n− 1)(2n− 1)

6
.

Therefore, our solution is

zn =
b(n− 1)

c(n)
x(n)tn =

n(n− 1)(2n− 1)

6
.

We have “mechanically” discovered the identity

∆

(
n(n− 1)(2n− 1)

6

)
= n2,

which yields the evaluation ∑
06k<n

k2 =
n(n− 1)(2n− 1)

6

that we proved earlier.

5.3 Expressive Complexity analysis

For our complexity analysis we shall compare two bodies of code: SymPy’s concrete module
and Maple’s SumTools package. The method to analyze the code is identical to the previous
chapters. For Python, we concatenate all relevant source code into a single file, then apply the
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vocabulary length volume difficulty effort

count 41 41 41 41 41
mean 44.20 171.85 1216.02 19.54 164289.43
std 61.17 477.82 4066.32 36.16 932942.16
min 2.00 2.00 2.00 0.50 1.00
25% 14.00 25.00 92.51 5.73 464.14
50% 26.00 54.00 255.00 8.68 2526.49
75% 46.00 143.00 830.45 22.74 19896.48
max 368.00 3056.00 26048.01 229.86 5987521.23

Table 5.1: Summary of Maple expressive complexity statistics for the summation problem.

vocabulary length volume difficulty effort

count 52 52 52 52 52
mean 24.62 41.12 221.92 4.16 1934.36
std 24.05 52.76 348.37 3.35 4362.43
min 2.00 2.00 2.00 0.50 1.00
25% 9.00 9.75 30.91 1.50 46.53
50% 15.50 20.50 84.48 3.71 284.56
75% 32.50 49.50 246.17 5.66 1535.47
max 110.00 260.00 1692.03 13.06 22103.44

Table 5.2: Summary of Python expressive complexity statistics for the summation problem.

radon program to evaluate the Halstead metrics on the single source file. For Maple, we simply
apply the SoftwareMetrics[HalsteadMetrics] procedure to the SumTools package. As before,
both programs run at the procedure level, so every procedure has its Halstead metrics evaluated
individually. The results of this operation are fed into a pandas dataframe for further analysis and
plotting. The statistical summary of this analysis is in Tables 5.1 and 5.2.

As we have seen in the previous two chapters, Python has a superior score in nearly every
Halstead metric, though the difference is less pronounced here. As before, we have given graphical
evidence in Figures 5.1 to 5.4. The conclusions drawn from those are roughly the same as before.

Here we finally obtain evidence that Python difficulty and length might generally undercut
Maple’s. Figures 5.1 and 5.2 show that Maple’s effort and difficulty, as a function of procedure
length, seem to grow much faster than Python’s. We suspected this conclusion in the previous two
chapters, but refrained from this conclusion since we lacked sufficiently long Python programs. We
now have a more complete picture.

5.4 Qualitative discussion

For our qualitative discussion we shall focus on two short programs to compute antidifferences
of polynomials. That is, given a polynomial p(n), we will compute a polynomial x(n) such that
∆x(n) = p(n). Maple and Python programs are given in Listings 5.1 and 5.2. Simple examples of
Gosper’s algorithm in both systems are presented in Listings 5.3 and 5.4.

What we have gained in interesting quantitative data—slightly longer Python programs—we
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Figure 5.1: Scatterplot comparing effort against length for Maple and Python code to solve the summation
problem. Python seems to undercuts Maple in effort at longer length procedures. (An outlier
in the Maple dataset has been omitted for clarity. It lies far up and to the right of all displayed
points.)

have lost in interesting qualitative data. Our discussion here is brief. The most notable feature
of the two implementations is that they are remarkably similar. Despite being a general purpose
programming language, Python has not lost much to Maple in this problem.

Since Python puts emphasis on its class system, the SymPy Poly class implements various nice
features, such as polynomials being callable. That is, given p = Poly(x**2 + x + 1, x), we can
write things such as p(1) or p(n + 1). This lets us avoid the function call Translate(p, x, 1)

in the Maple solution.
One feature of Maple is that its variables are symbolic by default. Thus, while SymPy must

declare the symbolic variables c[k] with symbols(...), the Maple solution can merely use the
variables c[k] without defining anything. This could be viewed as a strength for interactive use,
but a weakness for writing programs, where clarity is more important than convenience.
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Figure 5.2: Scatterplot comparing difficulty against length for Maple and Python code to solve the sum-
mation problem. Python and Maple begin on a similar trajectory, but Python then sharply
undercuts Maple for longer lengths.
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Figure 5.3: Histogram of log-effort comparing Python and Maple. Differences in this plot show differences
in orders of magnitude.
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Figure 5.4: Histogram of log-difficulty comparing Python and Maple. Differences in this plot show differ-
ences in orders of magnitude.



5.5. SOURCE CODE LISTINGS 53

5.5 Source code listings

1 import sympy as sp

2 from sympy import Dummy

3 from sympy.abc import n

4
5
6 def gosper_polynomial(p):

7 p = sp.poly(p)

8 p_var = p.gens [0]

9 x_degree = p.degree () + 1

10 cs = sp.symbols("c0:{}".format(x_degree + 1))

11
12 x = sp.Poly(reversed(cs), p_var)

13
14 n = Dummy("n")

15 soln = sp.solve(x(n + 1) - x(n) - p(n), cs)

16
17 return x.as_expr ().subs(soln)

18
19
20 # Prints: n * (n - 1) * (2n - 1) / 6.

21 print(gosper_polynomial(n**2).subs("c0", 0).factor ())

22
23 # Prints: n**9/9 - n**8/2 + 2*n**7/3 - 7*n**5/15 + 2*n**3/9 - n/30

24 print(gosper_polynomial(n**8).subs("c0", 0))

Listing 5.1: Finding antidifferences of polynomials with SymPy.
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1 with(PolynomialTools):

2
3
4 gosper_polynomial := proc(p :: polynom)

5 p_var := indets(p)[1]:

6 x_degree := degree(p) + 1:

7
8 vars := {seq(c[k], k=0.. x_degree)}:

9 x_poly := add(c[k] * p_var^k, k=0.. x_degree):

10
11 diff := Translate(x_poly , p_var , 1) - x_poly - p:

12 eqns := CoefficientList(diff , p_var):

13
14 soln := solve(eqns , vars):

15
16 return subs(soln , x_poly);

17 end proc:

18
19
20 # Prints: n (2n - 1) (n - 1) / 6.

21 print(factor(subs(c[0] = 0, gosper_polynomial(n^2))));

22
23 # Prints: 1/9 n^9 - 1/2 n^8 + 2/3 n^7 - 7/15 n^5 + 2/9 n^3 - 1/30 n/30

24 print(subs(c[0]=0 , gosper_polynomial(n^8)));

Listing 5.2: Finding antidifferences of polylnomials with Maple.

1 > with(sumtools):

2 > sum(k^2, k=0..n-1);

3 3 2

4 1/3 n - 1/2 n + 1/6 n

5
6 > gosper(k^2, k);

7 (k - 1) k (2 k - 1)

8 -------------------

9 6

10
11 > gosper(k^2, k=0..n-1);

12 (n - 1) n (2 n - 1)

13 -------------------

14 6

Listing 5.3: Checking Equations (4.2) to (4.4) with Maple’s sumtools package.
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1 >>> import sympy as sp

2 >>> import sympy.concrete.gosper as gosper

3 >>> from sympy.abc import k, n

4
5 >>> sp.summation(k**2, (k, 0, n - 1)).factor ()

6 n*(n - 1)*(2*n - 1)/6

7
8 >>> gosper.gosper_sum(k**2, k)

9 k*(k - 1)*(2*k - 1)/6

10
11 >>> gosper.gosper_sum(k**2, (k, 0, n - 1))

12 n*(n - 1)*(2*n - 1)/6

Listing 5.4: Checking Equation (5.2) with SymPy’s concrete module.
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Conclusion

Un auteur ne nuit jamais tant à ses lecteurs que quand il dissimule une
difficulté.
(An author never does more damage to his readers than when he hides
a difficulty.)

Évariste Galois, Manuscrits de Évariste Galois [Gal08].

Like a carpenter with a favorite hammer, every programmer has a preferred language. Sometimes
this preference is quite nebulous—nothing more than a gut feeling—other times there are arguments
to back it up. These arguments often focus on how the preferred language solves such and such
problem elegantly, while other languages require clunky, heavy-handed solutions. It may seem
plausible to attribute this preference to personal tastes. After all, with dozens of languages to suit
every possible fancy, who are we to say what is truly better? This relativism is a mistake. At some
point we must call a fool the carpenter who uses a screwdriver on nails. That is the spirit of what
we have attempted here.

We have provided a series of quantitative measurements using the Halstead metrics to demon-
strate that one language—Python—is simpler than another—Maple—in the area of computer al-
gebra. Though Python seems to outperform Maple, the quantitative difference is not always sig-
nificant. The qualitative difference seems generally striking, but could be viewed differently by
different readers. That is, the results here must be considered suggestive rather than prescriptive.
This should be viewed as the starting point of a more serious investigation, not the end of one.

What should a more serious investigation look like? There are two major improvements in our
methodology that would strengthen our conclusions: (1) A larger sample size, and (2) reduced
measurement ambiguity.

We examined three nontrivial problems in computer algebra. This gave us interesting things to
talk about, but a small body of code to compare. Once Halstead metric computation is automated,
there is no reason to limit ourselves in such a fashion. An obvious next step would be to gather
and compare enormous corpora of code in both languages. Both Maple and Python are immensely
popular in their areas of specialty. There is an abundance of freely available and easily accessible
code to analyze.

We gathered the Halstead metrics with two language specific tools. These were Python’s radon
library and Maple’s SoftwareMetrics package. Only radon was truly open for examination, so it
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was impossible to determine how exactly Maple was computing the Halstead metrics. It is possible
that the two libraries were computing slightly different metrics. In fact, both libraries make ques-
tionable choices were computing the metrics, but it is likely infeasible to patch SoftwareMetrics.
A superior option would be to create a language-agnostic tool to compute the Halstead metrics.

Despite these problems, this technique of evaluating programming languages remains promising.
Programming language design is driven by a desire to expend less energy. We have not marched
from assembly language to the present out of mere curiosity. It is easy to declare our current
languages superior in comparison to the primitive languages of the past; it is harder to look at
modern languages and make the same conclusion. In any event, we can surely do better than shrug
and give up. We have just made the first stab for mathematicians.
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